

© 2004 Crytek 1

LipSyncing in the CryEngine® 2004-09-08 How it works Preprocess
• Phonemes are extracted and edited using the program MagPie.
• For each phoneme a morph-target is specified.
• A dialog is compiled into a sync-sequence of phonemes. Real-time
• The dialog is played and according to the sync-sequence the appropriate morph-targets are blended together to reflect the facial-expression. Additionally expressions can be defined via script or animation-sequences (CryMovie). Preparing the character model The character-model must provide all morph-targets used for lip-syncing/expressions. For the system it doesn’t matter which phonemes you choose, as long as the phonemes match correctly in MagPie. The morph-target names for the phonemes must be Phoneme_<phonemename> (e.g. “Phoneme_th ”). Creating sync sequences 1. Start MagPie and make sure the framerate is set to 30. 2. Create a new expression-set, add all you phonemes to the set (the phoneme name must match the one in the morph-targets, but without the prefix ‘Phoneme_’. For example, if the morph-target is called ‘Phoneme_th ’, the matching expression in MagPie must be called ‘th ’. 3. If you want another expression to trigger (which is not prefixed) you must name it

#[MorphTargetName]. The hash (#) indicates that no prefix should be attached. 4. Additionally to the phonemes you will need a base-expression (no expression) which must be called ‘<base…>’ (where … indicates an arbitrary suffix). 5. You can have up to 3 expression-sets to support facial-expressions bound to the dialog. Normally you would create one expression-set for all the phonemes to do the lip-sync-part, and another expression-set for all expressions like angry, sad, etc. 6. After syncing you wave-file you can export the data to the TextFile-format and save it in the same folder as the wave-file which will be loaded by the game. For details on how to use MagPie consult the MagPie reference. How to show LipSyncing in the CryEngine Every entity which has a character loaded can play one dialog at a time by calling
self:SayDialog() (where self is a CScriptObjectEntity). The parameters to this function are the following:

Crytek Studios LipSyncing in the CryEngine®

© 2004 Crytek 2

SayDialog() parameters Parameter Parameter name (internal) Description 1 pszFilename Path the wave file to be played 2 nVol Volume of sound (0-255) 3 fMin Minimum sound attenuation radius 4 fMax Maximum sound attenuation radius 5 (opt) nFlags Sound-Flags (analogous to Load3Dsound) 6 (opt) fClipDistance ClipDistance of sound This function will load and start playback of the wave file and, if a sync-file is found, will automatically be lip-synced. Note: If you make another call to SayDialog() while the character is still busy saying something, the system will stop and unload the first dialog then load and play the new one instead. To abort a dialog you can call self:StopDialog (where self is a CScriptObjectEntity). About expressions There are 2 different kinds of expressions available:
• Automated, random expressions (e.g. eye-twitching, blinking etc.)
• Scripted expressions (e.g. Sadness, happiness etc.) How to do automated, random expressions Create a new LUA script-file and define a table called ‘RandomExpressions’. In this table you can define sub-tables named by the morph-target with a set of parameters which define how this expression should be triggered. Example:

RandomExpressions={ -- main table

 rndexpr_blink={ -- morph-target name

 -- parameters for expression “blink” start here

 Interval=5,

 IntervalRandom=1,

 Amp=1,

 AmpRandom=0,

 BlendIn=0.1,

 Hold=0,

 BlendOut=0.1,

 },

 -- next expression goes here

} The following parameters are available for use in the LUA script. Scripting parameters for random expressions Parameter name (internal) Description

Crytek Studios LipSyncing in the CryEngine®

© 2004 Crytek 3

Interval Time in seconds this expression in repeated
IntervalRandom +/- random time difference in interval
Amp Amplitude of expression (0-1)
AmpRandom +/- random amplitude difference
BlendIn Blend in time, in seconds
Hold Hold-time (no change in amp) in seconds
BlendOut Blend out time, in seconds To activate random-expressions for a character, call self:DoRandomExpressions() (where self is a CScriptObjectEntity). The parameters to this function are as follows: Parameters for DoRandomExpressions() Parameter Parameter name(internal) Description 1 pszFilename Path the script file to be used 2 bRaiseError 1 if an error should be raised when a morph-target isn’t found, 0 otherwise. To stop random expressions, call self:DoRandomExpressions(“”); or self:ReleaseLipSync(); (where self is a CScriptObjectEntity). The latter function will stop all Lip Sync activity (useful if the character dies). How to do scripted expressions To trigger specific expressions you can call self:DoExpression() (where self is a CScriptObjectEntity). The parameters to this function are as follows: Parameters for self:DoExpression() Parameter Parameter name (internal) Description 1 pszMorphTarget Name of morph-target 2 fAmplitude Amplitude of expression (0-1) 3 fBlendIn Blend in time, in seconds 4 fHold Hold-time (no change in amp) in seconds 5 fBlendOut Blend out time, in seconds Expressions can overlap. That means that if you start a new expression before the previous one is finished, the first one will not stop playing. The expressions will be additively blended. There is no limit, apart from the available processing power, to the amount of simultaneous expressions that can be replayed. Scripted expressions in cut sequences (CryMovie) To trigger expressions in cut sequences, follow these steps:

Crytek Studios LipSyncing in the CryEngine®

© 2004 Crytek 4

1. Start the Sandbox editor. 2. Show the trackview and open the cut sequence. 3. Add a character entity to your sequence. 4. Create an expression track for the character. 5. Place keys at the desired times on the expression track. 6. In the key properties dialog you will find the same parameters as described in ‘How to do scripted expressions’. Edit these properties for each expression key.

